
Molecular Simulation with
GROMACS on CUDA GPUs

Erik Lindahl

Webinar 20130404

We’re comfortably
on the single-μs

scale today

Larger machines often
mean larger systems,
not necessarily longer

simulations

GROMACS is used on a
wide range of resources

Why use GPUs?
Throughput Performance

• Sampling
• Free energy
• Cost efficiency
• Power efficiency
• Desktop simulation
• Upgrade old machines
• Low-end clusters

• Longer simulations
• Parallel GPU simulation

using In#niband
• High-end efficiency by

using fewer nodes
• Reach timescales not

possible with CPUs

Caveat emperor:
It is much easier to get a reference

problem/algorithm to scale

i.e., you see much better
relative scaling before

introducing any optimization on the CPU side

When comparing programs:
What matters is absolute performance

(ns/day), not the relative speedup!

Many GPU programs today

Gromacs-4.5 with OpenMM

Gromacs running
entirely on CPU as
a fancy interface

Actual simulation running
entirely on GPU

using OpenMM kernels

Only a few select algorithms worked
Multi-CPU sometimes beat GPU performance...

Previous version - what was the limitation?

Why don’t we use the CPU too?

~2 TFLOP0.5-1 TFLOP
Random memory

access OK (not great)
Random memory
access won’t work

Great for
throughput

Great for complex
latency-sensitive stuff

(domain decomposition, etc.)

Programming model

CPU
(PME)

GPU

N OpenMP
threads

1 MPI rank 1 MPI rank 1 MPI rank 1 MPI rank

N OpenMP
threads

N OpenMP
threads

N OpenMP
threads

1 GPU
context

1 GPU
context

1 GPU
context

1 GPU
context

Domain decomposition
dynamic load balancing

Load balancingLoad balancing

Gromacs-4.6 next-generation GPU implementation:

Heterogeneous CPU-GPU acceleration in GROMACS-4.6

Wallclock time for an MD step:
~0.5 ms if we want to simulate 1μs/day
We cannot afford to lose all previous acceleration tricks!

• Δt limited by fast motions - 1fs
• Remove bond vibrations

• SHAKE (iterative, slow) - 2fs
• Problematic in parallel (won’t work)
• Compromise: constrain h-bonds only -

1.4fs

• GROMACS (LINCS):
• LINear Constraint Solver
• Approximate matrix inversion expansion
• Fast & stable - much better than SHAKE
• Non-iterative
• Enables 2-3 fs timesteps
• Parallel: P-LINCS (from Gromacs 4.0)

t=1

t=2’

t=1

t=2’’

LINCS:

t=1

t=2

A) Move w/o constraint

B) Project out motion
along bonds

C) Correct for rotational
extension of bond

CPU trick 1: all-bond constraints

• Next fastest motions is H-angle and
rotations of CH3/NH2 groups

• Try to remove them:
• Ideal H position from heavy atoms.

• CH3/NH2 groups are made rigid
• Calculate forces, then project back onto heavy atoms
• Integrate only heavy atom positions, reconstruct H’s

• Enables 5fs timesteps!

| |

3fd

| || |1-a a

b

a

1-a

a

2 3fad 3out 4fd

cb

3

θ

d

CPU trick 2: Virtual sites

Interactions Degrees of Freedom

3

rc rc
1
2
rc

(a) (b) (c)

FIG. 1: Communication patterns for the (a) half shell, (b) eighth shell and (c) midpoint methods illustrated for 2D domain
decomposition. rc is the cut-o� radius. The lines with circles show examples of pair interactions that are assigned to the
processor of the central cell. For (a) and (b) the assignment is based on the endpoints of the line, for (c) on the midpoint.

0

5

1

6

7

3

4

rc

FIG. 2: The domain decomposition cells (1-7) that communi-
cate coordinates to cell 0. Cell 2 is hidden below cell 7. The
zones that need to be communicated to cell 0 are dashed, rc

is the cut-o� radius.

are calculated.
Bonded interactions are distributed over the processors

by finding the smallest x, y and z coordinate of the charge
groups involved and assigning the interaction to the pro-

cessor with the home cell where these smallest coordi-
nates reside. This procedure works as long as the largest
distance between charge groups involved in bonded inter-
actions is not larger than the cut-o� radius. To check if
this is the case, we count the number of assigned bonded
interactions during domain decomposition and compare
it to the total number of bonded interactions in the sys-
tem.

For full dynamic load balancing the boundaries be-
tween the cells need to move during the simulation. For
1D domain decomposition this is trivial, but for a 3D
decomposition the cell boundaries in the last two dimen-
sions need to be staggered along the first dimensions to
allow for complete load balancing (we will go into the
details of the load balancing later). Fig. ?? shows the
communicated zones for 2D domain decomposition in the
most general case, namely a triclinic unit cell with dy-
namic load balancing. Zones A, B and C indicate the
parts of cells 1, 2 and 3 respectively that are within the
cut-o� radius rc of home cell 0. Without dynamic load
balancing this would be all that would need to be com-
municated to the processor of cell 0. With dynamic load
balancing the staggering can lead to an extra volume C’
in cell 3 that needs to be communicated, due to the non-
bonded interactions between cells 1 and 3 that must be
calculated on the processor of cell 0. For bonded interac-
tions zones A and B might also need to be expanded. To

8th-sphere

4

0

C B

B’

A’

cr

A

1

3 2C’

FIG. 3: The zones to communicate to the processor of cell 0,
see the text for details.

ensure that all bonded interaction between charge groups
can be assigned to a processor, it is su⌅cient to ensure
that the charge groups within a sphere of radius rc are
present on at least one processor for every possible cen-
ter of the sphere. In Fig. ?? this means we also need to
communicate volumes B’ and C’. When no bonded inter-
actions are present between charge groups, these volumes
are not communicated. For 2D decomposition A’, B’ and
C’ are the only extra volumes that need to be considered.
For 3D domain decomposition the pictures becomes quite
a bit more complicated, but the procedure is analogous
apart from more extensive book-keeping. All three cases
have been fully implemented for general triclinic cells.

The communication of the coordinates and charge
group indices can be performed e⌅ciently by ’pulsing’ the
information in one direction simultaneously for all cells.
This needs to be repeated for each dimension. Consider
a 3D domain decomposition where we decompose in the
order x, y, z; meaning that the x boundaries are aligned,
the y boundaries are staggered in along the x direction
and the z boundaries are staggered along the x and y
directions. Each processor first sends the zone that its
neighboring cell in -z needs to this cell. Now each pro-
cessor can send the zone it neighboring cell in -y needs,
plus the part of the zone it received from +z, that is also
required by the neighbor in -y. The last step consists
of a pulse in -x where (parts of) 4 zones are sent over.
In this way on 3 communication steps are required to
communicate with 7 processors, while no information is
sent over that is not directly required by the neighbor-
ing processor. The communication of the forces happens
according to the same procedure, but in reversed order
and direction.

Another example of a minor complication in the com-

munication is virtual interaction sites constructed from
atoms in other charge groups. This is used in some poly-
mer (anisotropic united atom) force fields, but GRO-
MACS can also employ virtual sites to entirely remove
hydrogen vibrations and construct the hydrogens in their
equilibrium positions from neighboring heavy atoms each
timestep. Since the constructing atoms are not necessar-
ily interacting on the same node, we have to track the
virtual site coordinate dependencies separately to make
sure they are both available for construction and that
forces are properly communicated back.

III. DYNAMIC LOAD BALANCING

Calculating the forces is by far the most time consum-
ing part in MD simulations. In GROMACS, the force
calculation is preceded by the coordinate communication
and followed by the force communication. We can there-
fore balance the load by determining the time spent in the
force routines on each processor and then adjusting the
volume of every cell in the appropriate direction. The
timings are determined using inline assembly hardware
cycle counters and supported for virtually all modern
processor architectures. For a 3D decomposition with or-
der x, y, z the load balancing algorithm works as follows:
First the timings are accumulated in the z direction to
the processor of cell z=0, independently for each x and y
row. The processor of z=0 sums these timings and sends
the sum to the processor of y=0. This processor sums the
timings again and send the sum to the processor of x=0.
This processor can now shift the x boundaries and send
these to the y=0 processors. They can then determine
the y boundaries, send the x and y boundaries to the
z=0 processors, which can then determine z boundaries
and send all boundaries to the processors along their z
row. With this procedure only the necessary information
is sent to the processors that need it and global commu-
nication is avoided.

As mentioned in the introduction, load imbalance can
come from several sources. One needs to move bound-
aries in a conservative fashion in order to avoid oscil-
lations and instabilities, which could for instance occur
due to statistical fluctuations in the number of particles
in small cells. We found that scaling the relative lengths
of the cells in each dimension with 0.5 times the load
imbalance, with a maximum scaling of 5% produced ef-
ficient and stable load balancing. Of course, with our
current decision to only communicate to nearest neigh-
bors one has to make sure that cells do not get smaller
than the cut-o� radius in any dimension, but when/if this
becomes a bottleneck it is straightforward to add another
step of communication. For a large numbers of cells or
inhomogeneous systems two more checks are required. A
first restriction is that boundaries should not move more
than halfway an adjacent cell (where instead of halfway
one could also choose a di�erent value). This prevents
cells from moving so far that a charge group would move

Load balancing works
for arbitrary triclinic cells

CPU trick 3: Non-rectangular
cells & decomposition

Lysozyme, 25k atoms
Rhombic dodecahedron
(36k atoms in cubic cell)

All these “tricks” now work #ne
with GPUs in GROMACS-4.6!

From neighborlists to cluster
pair lists in GROMACS-4.6

X X X X
X X X X
X X X X
X X X X

Organize
as tiles with

all-vs-all
interactions:

x,y,z
gridding

x,y grid
z sort
z bin

Cluster pairlist

Tiling circles is difficult

• GROMACS-4.6 calculates a “large enough” buffer
zone so no interactions are missed

• Optimize nstlist for performance - no need to
worry about missing any interactions with Verlet!

Need a lot of cubes
to cover a sphere

Interactions outside
cutoff should be 0.0

Group cutoff Verlet cutoff

rc=0.9, rl=1.0

rc=1.2, rl=1.3

rc=1.5, rl=1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.73

0.75

0.82

0.42

0.52

0.58

0.21

0.29

0.36

Tixel algorithm work-efficiency
8x8x8 tixels compared to a non performance-optimized Verlet scheme

Verlet

Tixel Pruned

Tixel non-pruned

Highly memory-efficient algorithm:
Can handle 20-40 million atoms with 2-3GB memory

Even cheap consumer cards will get you a long way

1.5 3 6 12 24 48 96 192 384 768 1536 3072
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

PME weak scaling

Xeon X5650 3T + C2075 / process

1xC2075 CUDA F kernel

1xC2075 CPU total

2xC2075 CPU total

4xC2075 CPU total

System size/GPU (1000s of atoms)

It
e

ra
ti

o
n

 t
im

e
 p

e
r

1
0

0
0

 a
to

m
s

(m
s/

st
e

p
)

Text

Complete time step including
kernel, h2d, d2h, CPU constraints,

CPU PME, CPU integration,OpenMP & MPI

480 μs/step (1500 atoms)

700 μs/step (6000 atoms)

0 100 200 300ns/day

Example performance: Systems with
~24,000 atoms, 2 fs time steps, NPT

CPU, 96 CPU cores

GPU, 1xGTX680

GPU, 4xGTX680

CPU, 6 cores

6 CPU cores +1xK20c GPU

CPU, 2*8 cores

dodec+vsites(5fs), 6 CPU cores

0 100 200 300

6 CPU cores +1xGTX680 GPU

dodec+vsites(5fs), 6 cores + 1xK20c

dodec+vsites(5fs), 6 cores + 1xGTX680

dodec+vsites(5fs), 2*8 CPU cores

Amber:
DHFR

Gromacs:
RNAse

The Villin headpiece
~8,000 atoms, 5 fs steps

explicit solvent
triclinic box

PME electrostatics

i7 3930K (GMX 4.5)

i7 3930K (GMX 4.6)

i7 3930K+GTX680

E5-2690+GTX Titan

0 200 400 600 800 1000 1200

ns/day

2,546 FPS (beat that, Battle!eld 4)

GLIC: Ion channel
membrane protein
150,000 atoms

i7 3930K (GMX4.5)

i7 3930K (GMX4.6)

i7 3930K+GTX680

E5-2690+GTX Titan

0 10 20 30 40

ns/day

Running on a simple desktop!

1 10 100

0.1

1

10

100

Strong scaling of Reaction-Field and PME

1.5M atoms waterbox, RF cutoff=0.9nm, PME auto-tuned cutoff

RF

RF linear scaling

PME

PME linear scaling

#Processes-GPUs

P
e

rf
o

rm
a
n

ce
 (
n

s/
d

a
y)

Challenge: GROMACS has very short iteration times -
hard requirements on latency/bandwidth

Scaling of Reaction-#eld & PME

Small systems often work best using only a single GPU!

1 2 4 8 16 32 64
1

10

100

1000

GROMACS 4.6 extreme scaling
Scaling to 130 atoms/core: ADH protein 134k atoms, PME, rc >= 0.9

XK6/X2090

XK7/K20X

XK6 CPU only

XE6 CPU only

#sockets (CPU or CPU+GPU)

n
s/

d
a

y

Using GROMACS
with GPUs in practice

Compiling GROMACS with CUDA
• Make sure CUDA driver is installed

• Make sure CUDA SDK is in /usr/local/cuda

• Use the default GROMACS distribution

• Just run ‘cmake’ and we will detect CUDA
automatically and use it

• gcc-4.7 works great as a compiler

• On Macs, you want to use icc (commercial)
Longer Mac story: Clang does not support OpenMP,

which gcc does. However, the current gcc versions for
Macs do not support AVX on the CPU. icc supports both!

Using GPUs in practice

• Verlet cutoff-scheme is more accurate
• Necessary for GPUs in GROMACS
• Use -testverlet mdrun option to force it w. old tpr #les
• Slower on a single CPU, but scales well on CPUs too!

In your mdp #le:
cutoff-scheme = Verlet
nstlist = 10 ; likely 10-50
coulombtype = pme ; or reaction-field
vdw-type = cut-off
nstcalcenergy = -1 ; only when writing edr

Shift modi#er is applied to both coulomb and VdW by
default on GPUs - change with coulomb/vdw-modi#er

Load balancing
rcoulomb = 1.0
fourierspacing = 0.12

• If we increase/decrease the coulomb direct-space
cutoff and the reciprocal space PME grid spacing by
the same amount, we maintain accuracy

• ... but we move work between CPU & GPU!
• By default, GROMACS-4.6 does this automatically at

the start of each run - you will see diagnostic output

GROMACS excels when you combine a fairly fast
CPU and GPU. Currently, this means Intel CPUs.

Demo

Acknowledgments
• GROMACS: Berk Hess, David v. der Spoel, Per Larsson, Mark Abraham
• Gromacs-GPU: Szilard Pall, Berk Hess, Rossen Apostolov
• Multi-Threaded PME: Roland Shultz, Berk Hess
• Nvidia: Mark Berger, Scott LeGrand, Duncan Poole, and others!

Test Drive K20
GPUs!

Experience The Acceleration

Questions?
Contact us

Devang Sachdev - NVIDIA
dsachdev@nvidia.com
@DevangSachdev

GROMACS questions
Check	
 www.gromacs.org

gmx-users@gromacs.org	

mailing	
 list

Stream other webinars from GTC
Express:
http://www.gputechconf.com/
page/gtc-express-webinar.html

Run GROMACS on Tesla K20
GPU today

Sign up for FREE GPU Test Drive
on remotely hosted clusters
www.nvidia.com/GPUTestDrive

mailto:dsachdev@nvidia.com
mailto:dsachdev@nvidia.com
mailto:dsachdev@nvidia.com
mailto:dsachdev@nvidia.com
mailto:dsachdev@nvidia.com
mailto:dsachdev@nvidia.com
http://www.gputechconf.com/page/gtc-express-webinar.html
http://www.gputechconf.com/page/gtc-express-webinar.html
http://www.gputechconf.com/page/gtc-express-webinar.html
http://www.gputechconf.com/page/gtc-express-webinar.html
http://www.gputechconf.com/page/gtc-express-webinar.html
http://www.gputechconf.com/page/gtc-express-webinar.html

Register for the Next GTC
Express Webinar

Molecular Shape Searching on GPUs
Paul Hawkins, Applications Science Group Leader, OpenEye
Wednesday, May 22, 2013, 9:00 AM PDT

Register at www.gputechconf.com/gtcexpress

